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9. Two-level system in a laser field 

 

9.1. Optical dynamics in the laser field 

 

For the discussion of the ZPL of the pure electronic 0-0 transition, we can forget 

about vibrations and phonons. We consider our molecule as a simple two-level 

system, coupled on the one hand to the exciting laser field, and on the other hand to 

baths causing relaxation: 

i) the empty photon modes responsible for spontaneous emission; 

ii) the (usually thermally populated) bath of phonons and low-frequency degrees of 

freedom responsible for coherence loss, i. e., for the decoherence time (this process is 

often called pure dephasing in the earlier literature). 

This problem is perfectly analogous to that of a spin-1/2 in a static magnetic field 

submitted to an oscillating electromagnetic wave. The optical excitation frequency 

replaces the Zeeman splitting, the laser field replaces the radiowave or microwave 

used to achieve the magnetic resonance for a spin-1/2 in NMR or ESR, respectively. 

This analogy can be supported rigorously with a density-matrix description of the 

two-level system (Feynman, Vernon, Hellwarth representation). Here, we just use the 

analogy with magnetic resonance with the following correspondence: 

static field Zeeman splitting   ⇔    electronic transition energy 

oscillating micro- or radio-wave    ⇔    laser wave 

longitudinal magnetization   ⇔    population of excited state 

transverse magnetization    ⇔     oscillating dipole moment of molecule. 

Just as in magnetic resonance, the state of the two-level system can be represented as 

a vector restricted to a sphere of radius 1, the Bloch sphere (see Fig. 9.1). The 

population difference between ground and excited state, and the real and imaginary 

parts of the coherence (i.e., the off-diagonal element of the density matrix) can be 

seen as the three components of a 3-dimensional vector in a fictitious space, the Bloch 

vector (see Fig.9.1).  If there is no relaxation, the Bloch vector remains on the sphere, 

because Hamiltonian (or unitary) evolution is equivalent to pure rotations, that do not 

change the vector’s modulus. There are two possible origins of Hamiltonian 

evolution, giving two perpendicular components of the rotation vector in the rotating 

frame of the Bloch vector (in magnetic resonance, this reference frame rotates around 
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the static magnetic field at the angular frequency of the oscillating magnetic field, in 

the optical problem it rotates at the laser frequency): 

i) a rotation around the vertical axis (Fig. 9.2a), at a rate given by the detuning δ  

between the laser frequency ω  and the resonance frequency egω  of the molecule,  

egωωδ −=  

 
Figure 9.1: The Bloch sphere, a convenient way to represent the state and the dynamics of a two-level 

system subject to a laser field. 

 

ii) a rotation around a horizontal axis (Fig. 9.2b) at a rate given by the Rabi frequency 

Ω , proportional to the laser electric field 0E


 and to the transition dipole moment 

egµ  of the molecule : 







0Eeg ⋅
=Ω
µ

 

 
Figure 9.2: A few cases of the rotation motion of the Bloch vector (thin line) around an effective 

rotation vector (or magnetic field in magnetic resonance), having the laser detuning as its vertical 

component, and the Rabi frequency, proportional to the laser field, as its horizontal component. 
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The ground state corresponds to the lowest point of the sphere, the excited state to its 

highest point. The points on the vertical axis represent statistical mixtures of ground 

and excited states, and the points on the (X,Y) equator circle represent coherent states 

with equal admixtures of ground and excited states.  

 

We can now visualize the movement of the Bloch vector in the absence of relaxation. 

The free evolution, without a laser field (Fig. 9.2a), is a rotation around the vertical 

axis at the detuning frequency δ . In presence of a resonant laser (Fig. 9.2b), the 

Bloch vector rotates around a horizontal axis determined by the phase of the driving 

laser, at a rate Ω  proportional to the laser electric field. In the general case of 

excitation with a non-resonant laser (Fig. 9.2c), the rotation vector presents two 

components, and the rotation rate is called generalized Rabi frequency, 2 2δ +Ω .  

 

9.2. Relaxation and dephasing ; Bloch equations 

 

Coupling a two-level molecule to a bath leads to two qualitatively different relaxation 

processes : 

i) Non-adiabatic processes, in which the bath exchanges energy with the system. The 

bath must act via fluctuations at the transition frequency, i.e., at high frequencies. In 

the case of optical transitions in a two-level system, the only process is population 

relaxation from the excited to the ground state. This relaxation can occur via 

spontaneous emission, or via non-radiative relaxation, in which the electronic energy 

is transformed into heat, usually into the high-frequency vibrational modes of the 

molecule. For optical transitions, the population relaxation rate is usually nearly 

independent of temperature, of the matrix, or of the insertion sites. 

ii) Adiabatic processes, in which the bath slightly changes the transition energy 

between the two levels, but does not induce transitions between these levels. In that 

case, the bath acts via its low-frequency fluctuations. Their frequency is so low that it 

is in general a good approximation to use a classical model for the bath, i.e., a model 

in which bath fluctuations are treated classically. The slight fluctuations of the 

transition frequency under bath fluctuations lead to a loss of memory of the phase, 

i.e., to a damping of the Bloch oscillation, and therefore to a broadening of the optical 
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line. This is the origin of the decoherence (or pure dephasing) contribution to the 

homogeneous width. 

The major cause of adiabatic relaxation for a molecule in a solid is its coupling to 

phonons, mainly acoustic phonons which are still populated at low temperatures, and 

low-frequency optical phonons which are more strongly coupled to the optical 

transition. 

  

The Bloch relaxation times in the optical case are quite similar to those defined for the 

magnetization: 

The relaxation time 1T  is the excited state lifetime (analogous to the magnetic 

longitudinal relaxation time). It describes how fast the population relaxes to 

equilibrium, in this case to the ground state. In general, contrary to magnetic 

resonance, there is no relaxation for the ground state in optical two-level systems, as 

the temperature is much lower than the optical transition energy. 

The relaxation time 2T  is the coherence lifetime (analogous to the magnetic 

transverse relaxation time). It is the inverse of the homogeneous width or the optical 

resonance line. As we have seen earlier,  

*
212

1
2
11

TTT
+=  

where *
2T  represents the inverse of the rate of decoherence (or pure dephasing), due 

to adiabatic processes. 

If we now introduce relaxation into the dynamics of the Bloch vector in addition to 

the coherent evolution caused by the laser field, we find two new dynamical 

processes. The Bloch vector relaxes at the dephasing rate 1
2
−T  towards the vertical 

axis of the sphere. In addition, it also relaxes towards the ground state, i.e., the lowest 

point of the sphere, at a rate 1
1
−T . When relaxation is present, the oscillating or 

rotating movements of the Bloch vector are damped. The Bloch vector relaxes 

towards the steady-state solution, which is constant in the rotating frame. The 

differential equations describing the movement of the Bloch vector under the coherent 

field and with relaxation are called Bloch equations. We won’t discuss them explicitly 

in this course (but see Ex. 9.1 for steady-state solutions). 
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9.3. Optical saturation 

 

We first qualitatively discuss the steady-state solutions of the optical Bloch equations. 

This steady state is reached in the frame rotating at the frequency of the laser 

oscillation. This means that the laser induces a forced oscillation of the system: the 

system accompanies the laser oscillation with a phase shift and an amplitude which 

vary according to the laser frequency. The steady state is reached when the variations 

of the Bloch vector due to relaxation are compensated by the variations due to 

precession in the laser field. For example, in the case of a resonant laser field, the 

steady-state solution deviates from the ground state, which means that some 

coherence is established by the laser. 

 
Figure 9.3: Variations of  

the population of the excited 

state as a function of laser 

detuning for different laser 

powers, showing optical 

saturation and broadening 

of the resonance line. 

 

 

 

The vertical component of the Bloch vector gives the excited state population, which 

is proportional to the fluorescence intensity. This population is sketched in Figure 9.3 

as a function of laser frequency, for various laser intensities. The response of the 

system at low intensity is linear, then it starts to saturate. This optical saturation 

manifests itself by the limitation of the fluorescence or absorption, and by the 

broadening of the optical line. At high power, it is possible to saturate the system with 

a non-resonant laser. This phenomenon is also called power broadening. 
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Figure 9.4: Saturation of the population of the excited state for increasing laser intensity (represented 

by the saturation parameter s, i.e., laser intensity expressed in units of the saturation intensity), and 

power broadening of the line. The broadening increases as the square root of the intensity for large 

intensities. The laser excites all resonant molecules within the Rabi frequency, which is proportional to 

the laser field, i.e., to the square root of the intensity. 

 

The ratio of the laser intensity to the saturation intensity is called the saturation 

parameter s . The excited state population ep  (proportional to the fluorescence 

intensity) and the saturated width )(sΓ are given by: 

 

sat

Is
I

= ;   
s

spe +
=

12
1   ;     ss +Γ=Γ 1)0()(    .   [9.1] 

 

Figure 9.4 shows how the signal and the width depend on the laser intensity. 

Optical saturation had been observed long ago on the very sharp optical lines of 

atoms. For molecules in the solid state, such experimental observations were difficult 

because of the broad inhomogeneous profile. One could in principle observe 

saturation via spectral hole-burning, but many other sources of saturation (for 

example the saturation due to the photochemical hole-burning process) mask the 

optical saturation of the two-level system. Single-molecule observations, on the 

contrary, do not suffer from chemical saturation effects, and directly display optical 

saturation. Figure 9.5 shows an example of fluorescence excitation lines of a single 

dibenzoterrylene molecule in a naphthalene crystal at various laser powers. 
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Figure 9.5 : Saturation 

of the fluorescence 

excitation line of a 

single dibenzoterrylene 

molecule in a 

naphthalene crystal. 

The excitation intensity 

is increased by a factor 

3-5 between each 

spectrum. 

 

 

 

9.4. Optical nutation 

 

The dynamics of an optical two-level system in a quickly varying laser field can often 

be discussed qualitatively by means of the Bloch vector picture. We examine the 

important example of a transient solution of the Bloch equations, optical nutation. 

A constant field amplitude is suddenly applied at time zero. The system goes from the 

ground state at time zero (before the field was applied), to the steady state under 

constant illumination at long times. In the rotating frame, the system starts from a 

downward pointing Bloch vector (ground state) and starts to precess (or nutate) on a 

cone around the axis defined by the effective magnetic field Ω
~  resulting from the 

laser detuning (vertical component) and the laser field amplitude (Rabi frequency, 

transverse component). In the absence of relaxation, the precession would continue at 

the same rate as long as the laser field remains constant. In practice, however, 

relaxation is present, and the transient motion is damped with a characteristic time 

depending on the Rabi frequency and on the times 1T  and 2T  (see Figure 9.6). After a 

time of the order of 2T , the Bloch vector tends towards the steady-state solution.  
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Figure 9.6: Optical nutation of the Bloch vector when a constant laser field is established suddenly. 

The left-hand part of the figure shows Bloch oscillations in the absence of relaxation for resonant and 

non-resonant cases.. In practice, relaxation quickly damps the oscillations, leading to the 

characteristic nutation transients of the right-hand part. 

A very direct way to observe this transient motion is to select a single optical two-

level system, e.g. a single molecule. The measured quantity is fluorescence intensity, 

which is proportional to the population of the excited state. Because each observation 

of a photon means that the molecule has just reached the ground state, the observation 

of one fluorescence photon projects the molecule into the ground state in the 

quantum-mechanical sense. Therefore, the system starts from the ground state 

immediately after each photon has been detected. This is exactly the same dynamics 

we would obtain by suddenly applying a constant laser intensity to a system 

previously in the ground state. Thus the probability per unit time of observing the next 

photon (after each photon observation) gives us the population of the excited state 

with the ground state as initial state. The histogram of time delays between 

consecutive photons is a picture of the time evolution of the excited state population 

during the optical nutation. As we discussed earlier, this histogram cannot be 

measured directly with a single detector because of the dead time of the detector. It is 

measured in coincidence measurements between two detectors with a Hanbury-Brown 

and Twiss setup, each detector detecting photons on either side of a beam splitter. The 

dip of the distribution for short times is a signature of the quantum nature of the light 

emitted by a single molecule. Such anti-correlation of fluctuations would be ruled out 

in a classical description of light, because the correlation of a classical function of 

time must always be maximal for zero time. 
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Figure 9.7 : Example of antibunching curves at low temperature (left, from Basché et al., Phys. Rev. 

Lett. 69 (1992) 1516) and at room temperature (right; reproduced with permission from Fleury et al. 

Phys. Rev. Lett. 84 (2000) 1148; Copyright 2000 American Physical Society). The main difference are 

the Rabi oscillations, which are observable at low temperature and high intensity only in plot c). 

 

The nutation transient at low temperature shows oscillations, because the laser is 

resonant with the transition of the two-level system. Therefore, the laser not only 

induces absorption, but also stimulated emission (a schematic way to visualize Rabi 

oscillations is to consider the interplay between these two effects). In the room-

temperature experiments, on the contrary, the molecule is excited via a vibronic band, 

so that the laser is not resonant with the emission. Therefore, no Rabi oscillations can 

appear. Moreover, the damping time of these oscillations at room temperature would 

be on the order of some tens of femtoseconds, much too short to detect in 

antibunching plots. 

 

9.5. Examples of quantum-optical experiments 

 

i) Light-shift: 
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Figure 9.8: Fluorescence excitation line of a single dibenzanthanthrene molecule without (bottom) and 

with (top) a strong pump intensity at frequency 0 MHz. The thin line is a calculation, and the insert 

shows a detail of an additional structure (from Lounis et al. Phys. Rev. Lett. 78 (1997) 3673). 

 

The transition frequency of an atomic or molecular system can be shifted by an 

electric field (Stark effect). The shift due to a light wave (light-shift) is very weak, but 

it can be enhanced by resonance. For the alternating electric field of a laser wave, the 

shift is quadratic, i.e. proportional to the intensity. It was measured by recording a 

single-molecule line with a weak probe beam, while a strong pump beam was used to 

illuminate the molecule. The results were in full agreement with optical Bloch 

equations [Ph. Tamarat et al., Phys. Rev. Lett. 75 (1995) 1514]. 

 

ii) Multiphoton resonances 

If the intensities of pump and probe beam are comparable (e.g. equal), the Bloch 

vector obeys a complex dynamics in the beating field of two lasers at different 

frequencies. Complex structures appear in a fluorescence excitation spectrum, which 

can be assigned to multiphoton resonances, in which several pump and probe photons 

are absorbed and emitted [B. Lounis et al., Phys. Rev. Lett. 78 (1997) 3673]. Similar 

structures can be seen when optical and microwaves are used to illuminate the 

molecule, see Figure 64 [Ch. Brunel et al., Phys. Rev. Lett. 81 (1998), 2679].  
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Figure 9.9: Complex excitation lineshapes obtained when a single molecule is subject to  a strong 

radio-frequency field. The different components are broadened and shifted by different amounts. 

Experiments (left) and calculations based on optical Bloch equations (right). From Brunel et al., Phys. 

Rev. Lett. 81 (1998) 2679. 

 

iii) Single-photon sources 

For quantum cryptography, quantum computing, or for measurements with squeezed 

light, a high-rate source of single photons would be very attractive. An ideal single-

photon source should deliver one and only one photon per shot. This ensures, for 

example, that this quantum state cannot be copied. Single molecules can work as 

single-photon sources. In the first work in this direction, a single molecule was swept 

adiabatically through resonance with a laser, which led to its excitation with a 

probability close to 80 %. In 70% of the sweeps, the molecule emitted one and only 

one photon, which is a much higher yield than with an attenuated coherent source (see 

Figure 9.10, [Ch. Brunel et al., Phys. Rev. Lett. 83 (1999) 2722]). Similar experiments 

have been performed at room temperature with a pulsed laser [B. Lounis and W. E. 

Moerner, Nature 407 (2000) 491].  
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Figure 9.10 : Autocorrelation function of the intensity delivered by a single molecule performing 

periodic adiabatic sweeps through the frequency of the exciting laser. The middle spectrum shows that, 

in 70 % of the cases, one and only one photon is emitted. Left : experimental results ; Right calculated 

histograms based on a quantum Monte-Carlo simulation of Bloch equations; from Brunel et al., Phys. 

Rev. Lett. 83 (1999) 2722 . 

 

Since these first demonstrations with molecules, several other individual nano-objects 

have been proposed as single-photon sources : color centers in diamond, conjugated 

polymers, semiconductor nanocrystals, and self-assembled quantum dots in 

heterostructures. All of these sources could be useful in applications where no 

coherence between photons is required. Quantum computing and teleportation 

experiments usually require coherent single photons. In that case, emitters have to be 

extremely well shielded from perturbation by their environments, which restricts the 

possibilities to single atoms in the gas phase and single self-assembled quantum dots. 

Recently, self-assembled quantum dots have been used to deliver single photons, or 

pairs of entangled photons, with a high rate. 

 

 

 

 

 

 



 108 

Exercise 9.1: The Bloch equations are differential equations representing the time 

dependence of the Bloch vector’s components ( ), ,X Y Z : 

X YX
X Y ZY

Y ZZ

γ δ
δ γ
− −=

− −Ω=
Ω −Γ + Γ=







 

where the rates 11/ TΓ =  and 21/ Tγ =  are the inverses of the longitudinal and 

transverse relaxation times, respectively.  

i) Find the steady-state solution of this system of equations and show how it can lead 

to optical saturation as described above. 

ii) In the limit of weak excitation power, find the lineshape of the two-level system’s 

resonance in a spectrum of angular frequencies, and express its linewidth with times 

1T  and 2T . 

iii) Derive the lineshape and linewidth for arbitrary excitation power and deduce the 

expression of the saturation intensity satI  mentioned in the lecture. Discuss the 

physical meaning of this expression. 

 

Exercise 9.2: Use second-order perturbation theory to calculate the light shift of the 

optical transition between ground and excited states of a two-level system, assuming 

the applied wave to be far detuned from the optical transition. 

 

Exercise 9.3: Compare the signal-to-noise ratios in two absorption experiments, one 

with a classical wave and one with a stream of photons from an ideal single-photon 

source delivering single photons at regular intervals. The two sources are supposed 

to have the same average intensity.   

 


